Fault Diagnosis of Power Network based on Radial basis Function Neural Network
نویسندگان
چکیده
منابع مشابه
Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملRadial Basis Neural Network Based Islanding Detection in Distributed Generation
This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...
متن کاملMedian radial basis function neural network
Radial basis functions (RBFs) consist of a two-layer neural network, where each hidden unit implements a kernel function. Each kernel is associated with an activation region from the input space and its output is fed to an output unit. In order to find the parameters of a neural network which embeds this structure we take into consideration two different statistical approaches. The first approa...
متن کاملTraining Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2018
ISSN: 1757-899X
DOI: 10.1088/1757-899x/466/1/012099